Compacité

Valeurs d'adhérences d'une suite

Exercice 1 [01170] [correction]

Soit u une suite d'éléments de E. Etablir que

$$Adh(u) = \bigcap_{n \in \mathbb{N}} \overline{\{u_p/p \geqslant n\}}$$

et en déduire que Adh(u) est une partie fermée.

Exercice 2 [03216] [correction]

Soit (u_n) une suite réelle vérifiant

$$u_{n+1} - u_n \to 0$$

Montrer que l'ensemble des valeurs d'adhérence de u est un intervalle.

Exercice 3 [02946] [correction]

Soit a une suite de réels telle que $a_{n+1} - a_n$ tend vers 0. Montrer que l'ensemble des valeurs d'adhérence de a est un intervalle.

Exercice 4 [01162] [correction]

Soit K une partie compacte d'un espace vectoriel normé E. Montrer que si une suite (u_n) d'éléments de K n'a qu'une seule valeur

d'adhérence alors cette suite converge vers celle-ci.

Exercice 5 [03263] [correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ continue et $u = (u_n) \in \mathbb{R}^{\mathbb{N}}$ vérifiant

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

On suppose que la suite u possède une unique valeur d'adhérence, montrer que celle-ci converge.

Exercice 6 [01163] [correction]

Soit (u_n) une suite réelle bornée telle que $u_n + \frac{1}{2}u_{2n} \to 0$.

Montrer que si a est une valeur d'adhérence de (u_n) alors -2a l'est aussi. En déduire que (u_n) converge.

Exercice 7 [02947] [correction]

Déterminer les suites réelles bornées telle que $\left(u_n + \frac{u_{2n}}{2}\right)_{n > 0}$ converge.

Exercice 8 [03466] [correction]

On munit $E = \mathbb{R}[X]$ des normes données par les relations

$$\|P\|_{\infty} = \sup_{t \in [0,1]} |P(t)| \text{ et } \|P\|_1 = \int_0^1 |P(t)| dt$$

et l'on considère la suite $(X^n)_{n\in\mathbb{N}}$ d'éléments de E.

- a) Vérifier que la suite $(X^n)_{n\in\mathbb{N}}$ est bornée pour $\|.\|_{\infty}$ et converge vers 0 pour la norme $\|.\|_{1}$.
- b) Comparer $\|.\|_1$ et $\|.\|_{\infty}$.
- c) En déduire que, bien que bornée, la suite $(X^n)_{n\in\mathbb{N}}$ ne possède pas de valeur d'adhérence pour $\|.\|_{\infty}$.

Partie compacte

Exercice 9 [01159] [correction]

Montrer que $\mathcal{O}_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}), {}^t A A = I_n\}$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

Exercice 10 [01160] [correction]

Montrer que toute partie fermée d'une partie compacte est elle-même compacte.

Exercice 11 [01164] [correction]

Soient K et L deux compacts d'un espace vectoriel normé E.

Etablir que $K + L = \{x + y / x \in K, y \in L\}$ est un compact de E.

Exercice 12 [01171] [correction]

Soient E et F deux espaces normés, A une partie fermée de E et B une partie compacte de F.

Soit $f: A \to B$ une application vérifiant :

- $f^{-1}(\{y\})$ est compact pour tout $y \in B$;
- l'image de tout fermé de A est un fermé de B.

Montrer que A est compact.

Exercice 13 [02777] [correction]

Soient A un compact d'intérieur non vide de \mathbb{R}^n et $L_A = \{u \in \mathcal{L}(\mathbb{R}^n), u(A) \subset A\}$. Montrer que L_A est un compact de $\mathcal{L}(\mathbb{R}^n)$.

Exercice 14 [03271] [correction]

[Théorème de Riesz]

Soit F un sous-espace vectoriel de dimension finie d'un \mathbb{K} -espace vectoriel E.

a) Montrer que pour tout $a \in E$, il existe $x \in F$ vérifiant

$$d(a, F) = ||a - x||$$

b) On suppose $F \neq E$. Montrer qu'il existe $a \in E$ vérifiant

$$d(a, F) = 1$$
 et $||a|| = 1$

c) On suppose le \mathbb{K} -espace vectoriel de dimension infinie. Montrer qu'il existe une suite (a_n) d'éléments de E vérifiant

$$\forall n \in \mathbb{N}, ||a_n|| = 1 \text{ et } d(a_{n+1}, \text{Vect}(a_0, \dots, a_n)) = 1$$

Conclure que la boule unité de E n'est pas compacte.

Exercice 15 [02778] [correction]

Soient $(E, \|.\|)$ un espace vectoriel normé et F un sous-espace vectoriel de dimension finie de E.

a) Montrer

$$\forall x \in E, \exists y \in F, d(x, F) = ||x - y||$$

- b) Montrer, si $F \neq E$, qu'il existe $u \in E$ tel que d(u, F) = ||u|| = 1.
- c) Montrer que E est de dimension finie si, et seulement si, $B = \{x \in E, ||x|| \le 1\}$ est une partie compacte.

Exercice 16 [03472] [correction]

Soient K une partie compacte d'un espace de dimension finie et r > 0. Montrer que la partie

$$K_r = \bigcup_{x \in K} \bar{B}(x, r)$$

est compacte.

Compacité et continuité

Exercice 17 [01175] [correction]

Soit E un espace vectoriel normé de dimension finie.

- a) Soit A une partie non vide de E. Montrer que l'application $x \mapsto d(x, A)$ est continue sur E.
- b) Soit K un compact non vide inclus dans un ouvert U. Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in K, B(x, \alpha) \subset U$$

Exercice 18 [04089] [correction]

Soient $(E, \|.\|)$ un espace vectoriel normé, K un compact non vide de E et $f: K \to K$ telle que

$$\forall (x,y) \in K^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||$$

- a) Montrer que f possède au plus un point fixe.
- b) Justifier qu'il existe $c \in K$ tel que

$$\forall x \in K, ||f(x) - x|| \geqslant ||f(c) - c||$$

c) En déduire que f admet un point fixe.

Exercice 19 [02775] [correction]

Soient (E, ||.||) un espace vectoriel normé, K un compact non vide de E et $f: K \to K$ telle que

$$\forall (x, y) \in K^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||$$

- a) Montrer qu'il existe un unique point fixe c de f sur K.
- b) Soit (x_n) telle que $x_{n+1} = f(x_n)$ et $x_0 \in K$. Montrer que la suite (x_n) converge vers c.

Exercice 20 [01176] [correction]

Soit K un compact non vide d'un espace vectoriel normé E de dimension finie. On considère une application $f: K \to K$ vérifiant

$$\forall x, y \in K, x \neq y \Rightarrow d(f(x), f(y)) < d(x, y)$$

Montrer que f admet un unique point fixe.

Exercice 21 [02955] [correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie, u dans $\mathcal{L}(E)$ et C un compact convexe non vide de E stable par u. Si $n \in \mathbb{N}^*$, soit

$$u_n = \frac{1}{n} \sum_{i=1}^{n-1} u^i$$

a) Montrer que :

$$\forall n \in \mathbb{N}, u_n(C) \subset C$$

- b) Soit $x \in u_n(C)$. Proposer un majorant de N(x u(x))
- c) Montrer que

$$\bigcap_{n\in\mathbb{N}^{\star}}u_n(C)\neq\emptyset$$

d) Montrer que u possède un point fixe dans K.

Exercice 22 [03410] [correction]

Soient f une application continue de $\mathbb R$ dans $\mathbb R$ et I un segment inclus dans l'image de f.

Montrer qu'il existe un segment J tel que

$$f(J) = I$$

Exercice 23 [03471] [correction]

Soit E un espace normé et f une application vérifiant

$$\forall x, y \in E, ||f(x) - f(y)|| = ||x - y||$$

Soit K une partie compacte de E telle que $f(K) \subset K$.

a) Pour $x \in K$ on considère la suite récurrente (x_n) donnée par

$$x_0 = x \text{ et } \forall n \in \mathbb{N}, x_{n+1} = f(x_n)$$

Montrer que x est valeur d'adhérence de la suite (x_n) .

b) En déduire que f(K) = K.

Exercice 24 [03857] [correction]

Soit K une partie compacte non vide d'un espace vectoriel normé E de dimension finie.

On considère une application $f: K \to K$ vérifiant ρ -lipschitzienne i.e. vérifiant

$$\forall x, y \in K, ||f(y) - f(x)|| \le \rho ||y - x||$$

- a) On suppose $\rho < 1$. Montrer que f admet un point fixe.
- b) On suppose $\rho = 1$ et K convexe. Montrer à nouveau que f admet un point fixe. On pourra introduire, pour $a \in K$ et $n \in \mathbb{N}^*$, les fonctions

$$f_n: x \mapsto \frac{a}{n} + \frac{n-1}{n} f(x)$$

Exercice 25 [01173] [correction]

Soient E et F deux espaces vectoriels normés de dimensions finies.

Soient K un compact de E et $f: K \to F$ une application continue injective.

- a) On pose L = f(K). Montrer que L est compact.
- b) Montrer que $f^{-1}: L \to K$ est continue.

Exercice 26 [04074] [correction]

Soit f une fonction numérique continue sur $[0, +\infty[$ telle que f ait une limite finie ℓ en $+\infty$.

Démontrer que f est uniformément continue sur $[0, +\infty[$.

Raisonnement de compacité

Exercice 27 [01161] [correction]

Soient K une partie compacte non vide d'un espace vectoriel normé E et $x \in E$. Montrer qu'il existe $y \in K$ tel que

$$d(x,K) = \|y - x\|$$

Exercice 28 [01165] [correction]

Soient F un fermé et K un compact d'un espace vectoriel normé E.

Etablir que la partie $F + K = \{x + y / x \in F, y \in K\}$ est fermée.

Exercice 29 [01166] [correction]

Soit K un compact d'un espace vectoriel normé E tel que $0 \notin K$.

On forme $F = \{\lambda . x / \lambda \in \mathbb{R}^+, x \in K\}$. Montrer que F est une partie fermée.

Exercice 30 [01167] [correction]

Soient K et L deux compacts disjoints d'un \mathbb{K} -espace vectoriel. Montrer que d(K, L) > 0.

Exercice 31 [01174] [correction]

Soient K et L deux compacts non vides et disjoints.

Montrer

$$d(K, L) = \inf_{x \in K, y \in L} ||y - x|| > 0$$

Exercice 32 [01168] [correction]

Soit F une partie fermée non vide d'un espace vectoriel normé de dimension finie E.

- a) Montrer que, pour tout $x \in E$, la distance de x à F est atteinte en un certain élément $y_0 \in F$.
- b) Y a-t-il unicité de cet élément y_0 ?

Exercice 33 [02772] [correction]

Soient f une fonction de \mathbb{R} dans \mathbb{R} et

$$\Gamma_f = \{(x, f(x))/x \in \mathbb{R}\}$$

son graphe.

- a) On suppose f continue. Montrer que Γ_f est fermé.
- b) On suppose f bornée et Γ_f est fermé dans \mathbb{R}^2 . Montrer que f est continue.
- c) Le résultat précédent subsiste-t-il si l'on ne suppose plus f bornée?

Exercice 34 [01177] [correction]

Soit $f:X\subset E\to F$ avec F espace vectoriel normé de dimension finie. On suppose que f est bornée et que

$$\Gamma_f = \{(x, y) \in X \times F/y = f(x)\}\$$

est une partie fermée de $E \times F$.

Montrer que f est continue.

Exercice 35 [03274] [correction]

Soit A une partie bornée non vide d'un \mathbb{R} -espace vectoriel de dimension finie E.

- a) Montrer qu'il existe une boule fermée de rayon minimal contenant A.
- b) On suppose l'espace E euclidien, montrer l'unicité de la boule précédente.

Exercice 36 [03305] [correction]

- a) Soit F une partie fermée d'un \mathbb{K} -espace vectoriel E de dimension finie. L'ensemble $F'=\bigcup_{x\in F}\overline{B(x,1)}$ est-il fermé?
- b) Qu'en est-il si on ne suppose plus l'espace E de dimension finie?

Exercice 37 [02776] [correction]

Soient E_1 et E_2 deux espaces vectoriels normés réels, f une application de E_1 dans E_2 telle que pour tout compact K de E_2 , $f^{-1}(K)$ soit un compact de E_1 . Montrer, si F est un fermé de E_1 , que f(F) est un fermé de E_2 .

Exercice 38 [01183] [correction]

Soit (F_n) une suite décroissante de fermés non vides et bornés d'un espace vectoriel normé E de dimension finie. On suppose que $\delta(F_n) \to 0$ en notant

$$\delta(F_n) = \sup_{x,y \in F_n} \|y - x\|$$

Montrer que $\bigcap_{n\in\mathbb{N}} F_n$ est un singleton.

Exercice 39 [01179] [correction]

Soit F un sous-espace vectoriel d'un espace vectoriel normé E.

- a) On suppose E de dimension finie. Montrer que $\bar{F} = F$.
- b) On ne suppose plus E de dimension finie, montrer qu'il est possible que $\bar{F} \neq F$.

Exercice 40 [02637] [correction]

On note (. | .) le produit scalaire canonique sur \mathbb{R}^n et $\|\cdot\|$ la norme associée. On rappelle l'inégalité de Cauchy-Schwarz : si $x, y \in \mathbb{R}^n$, $(x \mid y) \leq \|x\| \|y\|$ avec égalité si, et seulement si, x et y sont colinéaires et de même sens.

a) Soit $x, a, b \in \mathbb{R}^n$ tel que $a \neq b$ et ||x - a|| = ||x - b||. Montrer que

$$\left\| x - \frac{a+b}{2} \right\| < \|x - a\|$$

b) Soit F un fermé non vide de \mathbb{R}^n et $x \in \mathbb{R}^n$. Montrer qu'il existe $a \in F$ tel que

$$||x - a|| = \inf_{y \in F} ||x - y||$$

On supposera d'abord que F est borné avant d'étudier le cas général.

c) Soit A un convexe fermé non vide de \mathbb{R}^n . Montrer qu'il existe un unique $a \in A$ tel que

$$||x - a|| = \inf_{y \in A} ||x - y||$$

On note a=P(x) ce qui définit une application $P:\mathbb{R}^n\to A$ appelée projection sur le convexe A.

- d) Montrer que s'il existe $a \in A$ tel que $(x a \mid y a) \le 0$ pour tout $y \in A$, on a a = P(x).
- e) On suppose qu'il existe un $y \in A$ tel que

$$(x - P(x) \mid y - P(x)) > 0$$

En considérant les vecteurs de la forme ty + (1-t)P(x) avec $t \in [0,1]$, obtenir une contradiction.

- f) Déduire de d) et e) que a = P(x) si, et seulement si, $a \in A$ et $(x a \mid y a) \leq 0$ pour tout $y \in A$.
- g) Etablir que pour tout $x, y \in \mathbb{R}^n$,

$$(x - y \mid P(x) - P(y)) \ge ||P(x) - P(y)||^2$$

En déduire que P est continue.

Exercice 41 [04090] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que la suite $(A^p)_{p \in \mathbb{N}}$ soit bornée. On étudie la suite $(B_p)_{p \geqslant 1}$ avec

$$B_p = \frac{1}{p} \sum_{k=0}^{p-1} A^k$$

- a) Montrer que la suite $(B_p)_{n\geq 1}$ admet une valeur d'adhérence B.
- b) Montrer que B vérifie $B(I_n A) = O_n$ et $B^2 = B$.
- c) En déduire que B est une projection sur $\ker(A-I_n)$ parallèlement à $\operatorname{Im}(A-I_n)$.
- d) Conclure que la suite $(B_p)_{p \ge 1}$ converge vers B.

Corrections

Exercice 1 : [énoncé]

Une valeur d'adhérence appartient à chaque $\overline{\{u_p/p \geqslant n\}}$ donc

$$Adh(u) \subset \bigcap_{n \in \mathbb{N}} \overline{\{u_p/p \geqslant n\}}$$

Inversement, pour tout $\ell \in \bigcap_{n \in \mathbb{N}} \overline{\{u_p/p \ge n\}}$, on peut construire une suite extraire

de u de limite ℓ : on commence par choisir n_0 tel que $N(u_{n_0}-\ell) \leqslant 1$ ce qui est possible car $\ell \in \overline{\{u_p/p \geqslant 0\}}$ puis une fois n_k choisit, on choisit $n_{k+1} > n_k$ de sorte que $N(u_{n_{k+1}}-\ell) \leqslant 1/(k+1)$ ce qui est possible puisque $\ell \in \overline{\{u_p/p > n_k\}}$. La suite (u_{n_k}) est alors une suite extraite de la suite u de limite ℓ .

Exercice 2 : [énoncé]

Soient a < b deux valeurs d'adhérence de la suite u et $c \in]a, b[$. Montrons

$$\forall \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geqslant N, |u_n - c| \leqslant \varepsilon$$

ce qui établira que c est valeur d'adhérence de la suite u. Par l'absurde, supposons qu'il existe $\varepsilon>0$ et $N\in\mathbb{N}$ tel que

$$\forall n \geqslant N, u_n \notin [c - \varepsilon, c + \varepsilon]$$

Puisque a et b sont valeurs d'adhérence de u avec a < c < b, on a nécessairement

$$a < c - \varepsilon$$
 et $b > c + \varepsilon$

Puisque $u_{n+1} - u_n \to 0$, il existe un rang N' au-delà duquel $|u_{n+1} - u_n| \le \varepsilon$. Considérons alors le rang $n_0 = \max(N, N')$.

Si $u_{n_0}\leqslant c-\varepsilon$ alors pour tout $n\geqslant n_0$, on a $u_n\leqslant c-\varepsilon$ car le saut d'un terme au terme suivant est inférieur à ε et que le segment $[c-\varepsilon,c+\varepsilon]$ de longueur 2ε est une zone « interdite ». Le réel b ne peut alors être valeur d'adhérence de u. Si $u_{n_0}\geqslant c+\varepsilon$ alors, par le même argument, on a $u_n\geqslant c+\varepsilon$ pour tout $n\geqslant n_0$ et le réel a ne peut être valeur d'adhérence de u.

Absurde.

Exercice 3 : [énoncé]

Soit A l'ensemble des valeurs d'adhérence de la suite a.

Nous allons établir que A est un intervalle en observant que

$$\forall \alpha < \beta \in A, [\alpha, \beta] \subset A$$

(caractérisation usuelle des intervalles)

Soit $\alpha < \beta \in A$ et $\gamma \in [\alpha, \beta]$. Si $\gamma = \alpha$ ou $\gamma = \beta$ alors évidemment $\gamma \in A$. Supposons maintenant $\gamma \in]\alpha, \beta[$.

Soient $N \in \mathbb{N}$ et $\varepsilon > 0$. Puisque $a_{n+1} - a_n \to 0$, il existe un rang N' tel que

$$\forall n \geqslant N', |a_{n+1} - a_n| \leqslant \varepsilon$$

Comme α est valeur d'adhérence de a et que $\alpha < \gamma$ il existe $p \ge \max(N, N')$ tel que $a_p < \gamma$. Aussi, il existe $q \ge \max(N, N')$ tel que $a_q > \gamma$. Si p < q, on introduit

$$E = \{ n \in \llbracket p, q \rrbracket, a_n < \gamma \}$$

Cet ensemble E est une partie de \mathbb{N} , non vide (car $p \in E$) et majoré (parq). Cet ensemble admet donc un plus grand élément r. Nécessairement r < q car $a_q \geqslant \gamma$. Puisque $r \in E$ et $r+1 \notin E$, $a_r < \gamma \leqslant a_{r+1}$ et donc $|\gamma - a_r| \leqslant |a_{r+1} - a_r| \leqslant \varepsilon$. Si p > q, un raisonnement semblable conduit à la même conclusion. Finalement

$$\forall N \in \mathbb{N}, \forall \varepsilon > 0, \exists r \geqslant N, |\gamma - a_r| \leqslant \varepsilon$$

On peut donc affirmer que γ est valeur d'adhérence de a et conclure.

Exercice 4: [énoncé]

Soit (u_n) une suite d'éléments de K qui n'ait qu'une seule valeur d'adhérence ℓ . Par l'absurde supposons que (u_n) ne converge par vers ℓ . On peut écrire

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geqslant N, |u_n - \ell| > \varepsilon$$

Par conséquent il existe une infinité de termes de cette suite tels que $|u_n - \ell| > \varepsilon$. A partir de ces termes on peut construire une suite extraite de (u_n) qui étant une suite d'éléments du compact K possèdera une valeur d'adhérence qui ne peut être que ℓ compte tenu de l'hypothèse.

C'est absurde, car tous ces termes vérifient $|u_n - \ell| > \varepsilon$.

Exercice 5: [énoncé]

Notons a la valeur d'adhérence de u. Il existe une extractrice $\varphi: \mathbb{N} \to \mathbb{N}$ vérifiant

$$u_{\varphi(n)} \to a$$

Supposons par l'absurde que la suite u ne converge pas vers a.

Il existe alors $\varepsilon > 0$ et une infinité de terme de la suite u vérifiant

$$|u_n - a| > \varepsilon$$

Puisque $u_{\varphi(n)} \to a$, il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \left| u_{\varphi(n)} - a \right| \leqslant \varepsilon$$

Pour chaque $n \ge N$, il existe un entier $m > \varphi(n)$ tel que $|u_m - a| > \varepsilon$. Considérons le plus petit de ces entiers m. On a par construction

$$m > \varphi(n), |u_{m-1} - a| \leq \varepsilon \text{ et } |u_m - a| > \varepsilon$$

Ce qui précède permet alors de construire une infinité de terme de la suite u appartenant à

$$K = f([a - \varepsilon, a + \varepsilon]) \setminus]a - \varepsilon, a + \varepsilon[$$

Puisque, l'application f est continue, la partie $f([a-\varepsilon,a+\varepsilon])$ est compacte et donc K l'est aussi par intersection d'une partie compacte et d'une partie fermée. La suite extraite précédente admet alors une valeur d'adhérence dans cette partie ce qui contredit l'hypothèse de travail.

Exercice 6 : [énoncé]

Posons

$$\varepsilon_n = u_n + \frac{1}{2}u_{2n} \to 0$$

Si $u_{\varphi(n)} \to a$ alors $u_{2\varphi(n)} = 2\varepsilon_{\varphi(n)} - 2u_{\varphi(n)} \to -2a$. Ainsi

$$a \in Adh(u) \Rightarrow -2a \in Adh(u)$$

Si (u_n) possède une valeur d'adhérence a autre que 0 alors

$$\forall k \in \mathbb{N}, (-2)^k a$$
 est aussi valeur d'adhérence.

Or ceci est impossible car (u_n) est bornée.

Puisque (u_n) est bornée et que 0 est sa seule valeur d'adhérence possible, $u_n \to 0$.

Exercice 7 : [énoncé]

Posons $\ell = \lim_{n \to +\infty} \left(u_n + \frac{u_{2n}}{2} \right)$ et $v_n = u_n - \frac{2}{3}\ell$ de sorte que $\varepsilon_n = v_n + \frac{v_{2n}}{2} \to 0$.

Soit a une valeur d'adhérence de la suite (v_n) .

Il existe $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $v_{\varphi(n)} \to a$.

 $v_{2\varphi(n)} = 2\varepsilon_{\varphi(n)} - 2v_n \to -2a$ donc -2a est aussi valeur d'adhérence de (v_n) .

En reprenant ce processus, pour tout $p \in \mathbb{N}$, $(-2)^p a$ est valeur d'adhérence de (v_n) . Or la suite (u_n) est bornée, la suite (v_n) l'est donc aussi et ses valeurs d'adhérence le sont encore. On peut donc affirmer a = 0.

La suite (v_n) est bornée et 0 est sa seule valeur d'adhérence donc elle converge vers 0 (car si tel n'était pas le cas, il existerait une infinité de termes de la suite (v_n) en dehors d'un intervalle $[-\varepsilon, \varepsilon], \varepsilon > 0$, et de ces termes bornés on pourrait extraire une suite convergente d'où l'existence d'une valeur d'adhérence non nulle).

Exercice 8: [énoncé]

a) On a

$$||X^n||_{\infty} = 1 \text{ et } ||X^n||_1 = \frac{1}{n+1} \to 0$$

- b) On vérifie $\|\,.\,\|_1\leqslant\|\,.\,\|_\infty$ et ce qui précède assure aussi que ces normes ne sont pas équivalentes.
- c) Par l'absurde, si la suite (X^n) possède une valeur d'adhérence P pour la norme $\|.\|_{\infty}$, il existe une extractrice φ telle que $\|X^{\varphi(n)} P\|_{\infty} \to 0$ et alors $\|X^{\varphi(n)} P\|_1 \to 0$. Or $\|.\|_1$ étant dominée par $\|.\|_{\infty}$ et la suite (X^n) convergeant vers 0 pour $\|.\|_1$, on peut affirmer P = 0. Or $\|X^{\varphi(n)} P\|_{\infty} = \|X^{\varphi(n)}\|_{\infty} = 1$ ne tend pas vers 0. C'est absurde.

Exercice 9: [énoncé]

 $\mathcal{O}_n(\mathbb{R})$ est borné par 1 pour la norme

$$||A|| = \max_{1 \le i, j \le n} |a_{i,j}|$$

 $\mathcal{O}_n(\mathbb{R})$ est fermé car si $A_p\in\mathcal{O}_n(\mathbb{R})\to A$ alors ${}^tA_pA_p=I_n$ donne à la limite ${}^tAA=I_n$

Exercice 10: [énoncé]

Soit F une partie fermée d'un compact K. Si (x_n) est une suite d'éléments de F, alors c'est aussi une suite d'éléments de K et on peut donc en extraire une suite $(x_{\varphi(n)})$ convergeant dans K. Cette suite extraite est aussi une suite convergente d'éléments du fermé F, sa limite appartient donc à F. Au final, il existe une suite extraire de (x_n) convergeant dans F.

Exercice 11 : [énoncé]

Soit (u_n) une suite d'éléments de K+L. Pour tout $n\in\mathbb{N}$, on peut écrire $u_n=a_n+b_n$ avec $a_n\in K$ et $b_n\in L$. On peut extraire de la suite (a_n) d'éléments du compact K, une suite $(a_{\varphi(n)})$ convergeant vers un élément de K. On peut aussi extraire de la suite $(b_{\varphi(n)})$ d'éléments du compact L, une suite $(b_{\varphi(\psi(n))})$ convergeant vers un élément de L. Pour l'extractrice $\theta=\varphi\circ\psi, (a_{\theta(n)})$ et $(b_{\theta(n)})$ convergent vers des éléments de K et L donc $(u_{\theta(n)})$ converge vers un élément de K+L.

Autre démonstration K+L est l'image du compact $K\times L$ de E^2 par l'application continue $(x,y)\mapsto x+y$.

Exercice 12 : [énoncé]

Soit (u_n) une suite d'éléments de A. On va établir que cette suite possède une valeur d'adhérence dans A.

On pose $F_n = \overline{\{u_p/p \geqslant n\}}$. La suite (F_n) est une suite décroissante de fermés non vides. Posons $G_n = f(F_n)$. La suite (G_n) est une suite décroissante de fermés non vides. On peut considérer $y_n \in G_n$. La suite (y_n) possède une valeur d'adhérence y car B est compact. Pour tout $p \geqslant n$, on a $y_p \in G_p \subset G_n$ donc $y \in G_n$. Par suite, il existe $t_n \in F_n$ tel que $y = f(t_n)$. La suite (t_n) est une suite du compact $f^{-1}\{y\}$, elle possède donc une valeur d'adhérence t. Pour tout $p \geqslant n$, $t_p \in F_p \subset F_n$ donc $t \in F_n$.

Ainsi, t est une valeur d'adhérence de (u_n) .

Exercice 13 : [énoncé]

Etant en dimension finie, il suffit d'observer que L_A est une partie fermée et bornée de $\mathcal{L}(\mathbb{R}^n)$.

On munit \mathbb{R}^n d'une norme quelconque et $\mathcal{L}(\mathbb{R}^n)$ de la norme d'opérateur subordonnée.

Soit (u_n) une suite convergente d'éléments de L_A de limite u_{∞} . Pour tout $x \in A$, $||u_n(x) - u_{\infty}(x)|| \le ||u_n - u_{\infty}|| \, ||x|| \to 0$ donc $u_n(x) \to u_{\infty}(x)$. Or pour tout $n, u_n(x) \in A$ donc $u_{\infty}(x) \in \overline{A} = A$. Ainsi $u_{\infty} \in L_A$. La partie L_A est fermée. Il reste à montrer qu'elle est bornée.

Comme l'intérieur de A est non vide, il existe $x_0 \in A$ et $\alpha > 0$ vérifiant $\overline{B(x_0,\alpha)} \subset A$. De plus, la partie A étant bornée, il existe $M \in \mathbb{R}^+$ vérifiant $A \subset \overline{B(0,M)}$. Pour $u \in L(A)$ et $x \in \overline{B(0,1)}$, $u(x_0 + \alpha x) \in u(A) \subset A$ donc $||u(x_0) + \alpha u(x)|| \leq M$ puis $||u(x)|| \leq \frac{1}{\alpha} (M + ||u(x_0)||)$ et enfin $||u|| \leq \frac{1}{\alpha} (M + ||u(x_0)||)$.

Finalement la partie L_A est bornée et donc compacte.

Exercice 14: [énoncé]

a) Par caractérisation séquentielle d'une borne inférieure, il existe une suite (x_n) d'éléments de F vérifiant

$$||a - x_n|| \to d(a, F)$$

La suite (x_n) est une suite bornée de l'espace vectoriel F de dimension finie, il existe donc une suite extraite de celle-ci convergeant dans F. La limite de cette suite extraite est alors un vecteur $x \in F$ vérifiant d(a, F) = ||a - x||.

b) Soit a_0 un élément de E qui n'est pas dans F. Il existe $x_0 \in F$ vérifiant

$$d(a_0, F) = ||a_0 - x_0|| > 0$$

Considérons alors le vecteur

$$a = \frac{a_0 - x_0}{\|a_0 - x_0\|}$$

On a immédiatement ||a|| = 1 et donc

$$d(a, F) \leq ||a - 0_E|| \leq 1 \operatorname{car} 0_E \in F$$

De plus, pour tout $x \in F$,

$$||a-x|| = \frac{1}{||a_0-x_0||} ||a_0-y|| \text{ avec } y = x_0 + ||a_0-x_0|| x \in F$$

donc

$$||a - x|| \geqslant \frac{1}{||a_0 - x_0||} d(a_0, F) = 1$$

Finalement

$$d(a,F) = 1$$

c) Il suffit de construire la suite (a_n) en partant de a_0 vecteur unitaire et, une fois les vecteurs a_0, \ldots, a_n déterminés, on choisit a_{n+1} tel que

$$||a_{n+1}|| = 1$$
 et $d(a_{n+1}, F) = 1$

où F désigne le sous-espace vectoriel de dimension finie engendré par les vecteurs a_0, \ldots, a_n .

La suite (a_n) est alors une suite d'éléments de la boule unité fermée vérifiant

$$\forall n > m \in \mathbb{N}, ||a_n - a_m|| \geqslant 1$$

On ne peut extraire d'une telle suite une sous suite convergente. On en déduit que la boule unité fermée n'est pas compacte.

Exercice 15: [énoncé]

a) Par définition

$$d(x, F) = \inf \{ ||x - y|| / y \in F \}$$

Soit $n \in \mathbb{N}$. Le réel d(x, F) + 1/(n+1) ne minore par l'ensemble $\{||x - y|| / y \in F\}$ et donc il existe $y_n \in F$ tel que

$$d(x, F) \le ||x - y_n|| < d(x, F) + \frac{1}{n+1}$$

En faisant varier n, cela détermine une suite (y_n) d'éléments de F vérifiant

$$||x - y_n|| \to d(x, F)$$

Cette suite est bornée et évolue dans l'espace vectoriel normé F qui est de dimension finie, elle admet donc une valeur d'adhérence y dans F pour laquelle on obtient

$$d(x,F) = ||x - y||$$

b) Puisque $F \neq E$, il existe un vecteur x de E n'appartenant pas à F. On vérifie aisément

$$d(\lambda x, F) = |\lambda| d(x, F)$$

car pour $\lambda \neq 0$

$$\{\|\lambda x - y\|/y \in F\} = \{\|\lambda(x - y')\|/y' \in F\}$$

Il est donc possible de choisir x vérifiant d(x, F) = 1.

Pour tout vecteur $y \in F$, on a aussi d(x - y, F) = 1 car

$$\{||x - z||/z \in F\} = \{||x - y - z'||/z' \in F\}$$

Il ne reste plus qu'à trouver $y \in F$ tel que ||x - y|| = 1. Le vecteur $y \in F$ vérifiant d(x, F) = ||x - y|| convient. Le vecteur u = x - y est alors solution.

c) Si E est de dimension finie, la boule B est compacte car fermée et bornée en dimension finie.

Inversement, supposons par l'absurde que B est compacte et E de dimension infinie. Par récurrence, on construit une suite (u_n) de vecteurs de E en posant u_0 un vecteur unitaire quelconque, puis une fois u_0, \ldots, u_n déterminés, on définit u_{n+1} de sorte que

$$d(u_{n+1}, \text{Vect}(u_0, \dots, u_n)) = ||u_{n+1}|| = 1$$

Cette construction est possible par l'étude qui précède car E est supposé de dimension infinie.

La suite (u_n) ainsi définie est une suite d'éléments du compact B, on peut donc en extraire une suite convergente $(u_{\varphi(n)})$. Puisque cette suite converge

$$||u_{\varphi(n+1)} - u_{\varphi(n)}|| \to 0$$

or

$$||u_{\varphi(n+1)} - u_{\varphi(n)}|| \ge d(u_{\varphi(n+1)}, \operatorname{Vect}(u_0, \dots, u_{\varphi(n+1)-1})) \ge 1$$

C'est absurde.

Exercice 16: [énoncé]

Puisque l'espace est dimension finie, les parties compactes sont exactement les parties fermées et bornées.

Introduisons ||.|| une norme sur cet espace.

Puisque K est bornée, il existe $M \in \mathbb{R}^+$ tel que

$$\forall x \in K, ||x|| \leq M$$

et alors

$$\forall y \in K_r, \|y\| \leqslant M + r$$

La partie K_r est donc bornée.

Considérons maintenant (y_n) une suite convergente d'éléments de K_r et notons y_{∞} sa limite.

Pour tout $n \in \mathbb{N}$, il existe $x_n \in K$ tel que

$$y_n \in \bar{B}(x_n, r)$$
 i.e. $||y_n - x_n|| \leqslant r$

Puisque la partie K est compacte, on peut extraire de la suite (x_n) une suite $(x_{\varphi(n)})$ convergeant vers un élément $x_{\infty} \in K$.

Puisque $y_n \to y_\infty$, on a aussi $y_{\varphi(n)} \to y_\infty$ et la relation $||y_{\varphi(n)} - x_{\varphi(n)}|| \le r$ donne à la limite $||y_\infty - x_\infty|| \le r$.

Ainsi $y_{\infty} \in \bar{B}(x_{\infty}, r)$ avec $x_{\infty} \in K$ donc $y_{\infty} \in K_r$.

La partie K_r est donc fermée et finalement c'est une partie compacte.

Exercice 17 : [énoncé]

a) Soient $x, x' \in E$.

$$\forall y \in A, \ \|x - y\| \le \|x - x'\| + \|x' - y\|$$

donc $d(x, A) \le ||x - x'|| + ||x' - y||$ puis $d(x, A) - ||x - x'|| \le ||x' - y||$ et $d(x, A) - ||x - x'|| \le d(x', A)$.

Ainsi $d(x,A) - d(x',A) \le ||x-x'||$ et par symétrie $|d(x,A) - d(x',A)| \le ||x-x'||$. Finalement $x \mapsto d(x,A)$ est 1 lipschitzienne donc continue.

b) Considérons l'application $x \mapsto d(x, \mathcal{C}_E U)$ définie sur le compact K.

Cette application est bornée et atteint ses bornes. Posons $\alpha = \min_{x \in K} d(x, \mathcal{C}_E U)$

atteint en $x_0 \in K$.

Si $\alpha = 0$ alors $x_0 \in \overline{\mathcal{C}_E U}$ or $\mathcal{C}_E U$ est fermé et donc $x_0 \notin U$ or $x_0 \in K$. Nécessairement $\alpha > 0$ et alors

$$\forall x \in K, B(x, \alpha) \subset U$$

Exercice 18: [énoncé]

a) Supposons que f possède deux points fixes $x \neq y$. L'hypothèse de travail donne

$$||f(x) - f(y)|| < ||x - y||$$

ce qui est absurde si f(x) = x et f(y) = y.

b) On introduit la fonction $\delta: x \mapsto ||f(x) - x||$ définie sur K.

La fonction δ est continue sur le compact K, elle admet donc un minimum en un $c \in K$ et alors

$$\forall x \in K, \delta(x) \geqslant \delta(c)$$

c) Par l'absurde, si $f(c) \neq c$ alors

$$\delta(f(c)) = ||f(f(c)) - f(c)|| < ||f(c) - c|| = \delta(c)$$

ce qui contredit la minimalité de c. Il reste f(c) = c ce qui fournit un point fixe.

Exercice 19: [énoncé]

a) Unicité :

Supposons que f possède deux points fixes $x \neq y$.

L'hypothèse de travail donne

$$||f(x) - f(y)|| < ||x - y||$$

ce qui est absurde si f(x) = x et f(y) = y.

Existence:

On introduit la fonction $\delta: x \mapsto ||f(x) - x||$ définie sur K.

La fonction δ est continue sur le compact K, elle admet donc un minimum en un $c \in K$.

Si $f(c) \neq c$ alors

$$\delta(f(c)) = ||f(f(c)) - f(c)|| < ||f(c) - c|| = \delta(c)$$

ce qui contredit la minimalité de c. Il reste f(c)=c ce qui fournit un point fixe. b) Introduisons $d_n=\|x_n-c\|$. La suite (d_n) est décroissante et minorée donc elle converge; posons d sa limite. La suite (x_n) évolue dans un compact, il existe donc une extractrice φ telle que $(x_{\varphi(n)})$ converge vers un élément a de K. On a alors $d_{\varphi(n)}\to d$ et donc

$$d = ||a - c||$$

La suite $(x_{\varphi(n)+1})$ converge vers f(a) et aussi $d_{\varphi(n)+1} \to d$ donc

$$d = ||f(a) - c|| = ||f(a) - f(c)||$$

L'hypothèse $a \neq c$ contredirait l'hypothèse faite sur f, nécessairement a = c puis d = ||a - c|| = 0.

On peut alors conclure que (x_n) tend vers c.

Exercice 20: [énoncé]

Unicité : Si $x \neq y$ sont deux points fixes distincts on a

$$d(x,y) = d(f(x), f(y) < d(x,y)$$

C'est exclu et il v a donc unicité du point fixe.

Existence : Considérons la fonction réelle $g: x \mapsto d(x, f(x))$ définie sur K. Par composition g est continue et puisque K est une partie compacte non vide, g atteint son minimum en un certain $x_0 \in K$.

Si $f(x_0) \neq x_0$ on a alors

$$g(f(x_0)) = d(f(f(x_0)), f(x_0)) < d(f(x_0), x_0) = g(x_0)$$

ce qui contredit la définition de x_0 . Nécessairement $f(x_0) = x_0$ ce qui résout le problème.

Exercice 21 : [énoncé]

- a) C est stable par tous les u^i et puisque C est convexe et que $u_n(x)$ est une combinaison convexe de $x, u(x), \ldots, u^{n-1}(x)$, on peut assurer que C est stable par u_n .
- b) Il existe $a \in C$ tel que

$$x = u_n(a) = \frac{1}{n} (a + u(a) + \dots + u^{n-1}(a))$$

En simplifiant

$$x - u(x) = \frac{1}{n} \left(a - u^n(a) \right)$$

donc

$$N(x-u(x)) \leqslant \frac{2M}{n}$$

avec $M = \sup_{a \in C} N(a)$.

c) Puisque u_n est linéaire et continue, on peut affirmer que $u_n(C)$ est un compact convexe non vide.

De plus $u_n(C)$ est stable par u et donc pour tout naturel p, $u_p(u_n(C)) \subset u_n(C)$. Considérons alors la suite (x_n) définie à partir de $x_0 \in C$ et de la récurrence $x_n = u_n(x_{n-1})$.

Pour tout $p \ge n$, $x_p \in u_n(C)$ compte tenu de la remarque précédente.

La suite (x_n) évoluant dans le compact C, elle admet une valeur d'adhérence x_{∞} . Pour tout $n \in \mathbb{N}$, x_{∞} est valeur d'adhérence de la suite $(x_p)_{p \geqslant n}$ d'éléments du fermé $u_n(C)$ donc $x_{\infty} \in u_n(C)$.

Ainsi
$$x_{\infty} \in \bigcap_{n \in \mathbb{N}^{\star}} u_n(C)$$
 et donc $\bigcap_{n \in \mathbb{N}^{\star}} u_n(C) \neq \emptyset$.

d) Soit
$$x \in \bigcap_{n \in \mathbb{N}^*} u_n(C)$$
.

En vertu de b, on a pour tout $n \in \mathbb{N}$, $N(x - u(x)) \leq \frac{2M}{n}$ donc N(x - u(x)) = 0 puis u(x) = x.

Exercice 22 : [énoncé]

Notons α, β les extrémités de I.

Soient $a,b\in\mathbb{R}$ des antécédents de α,β respectivement. Malheureusement, on ne peut pas déjà affirmer $f([a,b])=[\alpha,\beta]$ car les variations de f sur [a,b] sont inconnues.

Posons

$$A = \{x \in [a, b] / f(x) = \alpha\} \text{ et } B = \{x \in [a, b] / f(x) = \beta\}$$

Considérons ensuite

$$\Delta = \{ |y - x| / x \in A, y \in B \}$$

 Δ est une partie de \mathbb{R} non vide et minorée. On peut donc introduire sa borne inférieure m. Par la caractérisation séquentielle des bornes inférieures, il existe deux suites $(x_n) \in A^{\mathbb{N}}$ et $(y_n) \in B^{\mathbb{N}}$ vérifiant

$$|y_n - x_n| \to m$$

La partie A étant fermée et bornée, on peut extraire de la suite (x_n) une suite $(x_{\varphi(n)})$ convergeant dans A. De la suite $(y_{\varphi(n)})$, on peut aussi extraire une suite

convergeant dans B et en notant x_∞ et y_∞ les limites de ces deux suites, on obtient deux éléments vérifiant

$$x_{\infty} \in A, y_{\infty} \in B \text{ et } |y_{\infty} - x_{\infty}| = \min \Delta$$

Autrement dit, on a définit des antécédents des extrémités de I dans [a,b] les plus proches possibles.

Pour fixer les idées, supposons $x_{\infty} \leq y_{\infty}$ et considérons $J = [x_{\infty}, y_{\infty}]$. On a $\alpha, \beta \in f(J)$ et f(J) intervalle (car image continue d'un intervalle) donc

$$I \subset f(J)$$

Soit $\gamma \in f(J)$. Il existe $c \in J$ tel que $f(c) = \gamma$.

Si $\gamma < \alpha$ alors en appliquant le théorème de valeurs intermédiaires sur $[z, y_{\infty}]$, on peut déterminer un élément de A plus proche de y_{∞} que ne l'est x_{∞} . Ceci contredit la définition de ces deux éléments.

De même $\gamma > \beta$ est impossible et donc $f(J) \subset I$ puis l'égalité.

Exercice 23 : [énoncé]

a) La suite (x_n) est évidemment une suite d'éléments du compact K. Elle admet donc une valeur d'adhérence \bar{x} dans K et il existe une infinité de termes de la suite (x_n) au voisinage de \bar{x} . Pour $\varepsilon > 0$, on peut trouver une infinité de $p \in \mathbb{N}$ vérifiant

$$||x_p - \bar{x}|| \leqslant \varepsilon/2$$

et donc une infinité de $p < q \in \mathbb{N}$ vérifiant

$$||x_p - x_q|| \leqslant \varepsilon$$

Or

$$||x_p - x_q|| = ||x_{q-p} - x||$$

car $x_n = f^n(x)$ et que ||f(x) - f(y)|| = ||x - y||.

Ainsi, on peut trouver une infinité de $n \in \mathbb{N}$ vérifiant

$$||x_n - x|| \le \varepsilon$$

b) La partie f(K) est compacte en tant qu'image d'un compacte par une application continue (f est continue car lipschitzienne) donc la partie f(K) est fermée. Puisque x est limite d'une suite d'éléments de f(K) (au moins à partir du rang 1) on peut affirmer que $x \in f(K)$ et ainsi $K \subset f(K)$.

Exercice 24: [énoncé]

a) La fonction f est continue car lipschitzienne. Considérons $g: x \in K \mapsto ||f(x) - x||$. La fonction g est réelle, continue et définie sur un compact non vide, elle admet donc un minimum en un certain $x_0 \in K$. Puisque

$$g(x_0) \leqslant g(f(x_0)) = ||f(f(x_0)) - f(x_0)|| \leqslant \rho ||f(x_0) - x_0|| = \rho g(x_0) \text{ avec } \rho < 1$$

On a nécessairement $g(x_0) = 0$ et donc $f(x_0) = x_0$ ce qui fournit un point fixe pour f.

b) Par la convexité de K, on peut affirmer que f_n est une application de K vers K. De plus

$$||f_n(y) - f_n(x)|| = \frac{n-1}{n} ||f(y) - f(x)|| \le \rho_n ||y - x||$$

avec $\rho_n < 1$.

Par l'étude ci-dessus, la fonction f_n admet un point fixe x_n . La suite (x_n) est une suite du compact K, il existe donc une suite extraite $(x_{\varphi(n)})$ convergeant vers un élément $x_\infty \in K$. La relation

$$f_{\varphi(n)}(x_{\varphi(n)}) = x_{\varphi(n)}$$

donne

$$\frac{a}{\varphi(n)} + \frac{\varphi(n) - 1}{\varphi(n)} f(x_{\varphi(n)}) = x_{\varphi(n)}$$

et donc à la limite

$$f(x_{\infty}) = x_{\infty}$$

Exercice 25: [énoncé]

- a) L est l'image d'un compact par une application continue donc L est compact.
- b) Supposons f^{-1} non continue : $\exists y \in L, \exists \varepsilon > 0, \forall \alpha > 0, \exists y' \in L$ tel que $|y' y| \leq \alpha$ et $|f^{-1}(y') f^{-1}(y)| > \varepsilon$.

Posons $x = f^{-1}(y)$ et en prenant $\alpha = \frac{1}{n}$ définissons $y_n \in L$ puis $x_n = f^{-1}(y_n)$ tels que $|y_n - y| \leq \frac{1}{n}$ et $|x_n - x| > \varepsilon$. (x_n) est une suite d'éléments du compact K donc elle possède une sous-suite convergente : $(x_{\varphi(n)})$. Posons $a = \lim x_{\varphi(n)}$. Comme f est continue, $y_{\varphi(n)} = f(x_{\varphi(n)}) \to f(a)$ or $y_n \to y$ donc par unicité de la limite y = f(a) puis $a = f^{-1}(y) = x$. Ceci est absurde puisque $|x_{\varphi(n)} - x| > \varepsilon$.

Exercice 26 : [énoncé]

Soit $\varepsilon > 0$. Il existe $A \in \mathbb{R}^+$ tel que

$$\forall x \geqslant A, |f(x) - \ell| \leqslant \varepsilon/2$$

et alors

$$\forall x, y \in [A, +\infty[, |f(y) - f(x)| \le \varepsilon)$$

De plus, f est continue sur [0,A] donc uniformément continue et il existe $\alpha>0$ tel que

$$\forall x, y \in [0, A], |y - x| \leq \alpha \Rightarrow |f(y) - f(x)| \leq \varepsilon(**)$$

Soit $x, y \in \mathbb{R}^+$ avec $|y - x| \le \alpha$. On peut supposer $x \le y$.

Si $x, y \in [0, A]$, on a $|f(y) - f(x)| \le \varepsilon$ en vertu de (**)

Si $x, y \in [A, +\infty[$, on a à nouveau $|f(y) - f(x)| \le \varepsilon$ cette fois-ci en vertu de (*). Si $x \in [0, A]$ et $y \in [A, +\infty[$, on a nécessairement $|x - A| \le \alpha$. (*) et (**) donnent alors

$$|f(x) - f(y)| \le |f(x) - f(A)| + |f(A) - f(y)| \le 2\varepsilon$$

Quitte à adapter le ε de départ, on obtient ce que l'on veut.

Autre méthode : on introduit $g=f\circ$ tan définie sur $[0,\pi/2[$ que l'on prolonge par continuité en $\pi/2$. Ce prolongement est continue sur un segment donc uniformément continue. Puisque $f=g\circ$ arctan avec arctan lipschitzienne, on obtient f uniformément continue!

Exercice 27 : [énoncé]

Par définition

$$d(x,K) = \inf_{y \in K} \|y - x\|$$

Pour tout $n \in \mathbb{N}^*$, il existe $y_n \in K$ tel que

$$d(x,K) \leqslant ||y_n - x|| \leqslant d(x,K) + \frac{1}{n}$$

La suite (y_n) d'éléments du compact K admet une valeur d'adhérence $y \in K$. Il existe alors une extractrice φ telle que $y_{\varphi(n)} \to y$. Mais alors $||y_{\varphi(n)} - x|| \to ||y - x||$ et

$$d(x,K) \leqslant ||y_{\varphi(n)} - x|| \leqslant d(x,K) + \frac{1}{\varphi(n)}$$

donne à la limite ||y - x|| = d(x, K).

On aurait pu aussi introduire la fonction $y \mapsto ||y - x||$ qui est continue sur un compact non vide et admet donc un minimum.

Exercice 28: [énoncé]

Soit (u_n) une suite convergente d'éléments de F+K de limite u. Pour tout $n\in\mathbb{N}$, on peut écrire $u_n=a_n+b_n$ avec $a_n\in F$ et $b_n\in K$. La suite (b_n) étant une suite d'élément du compact K, on peut en extraire une suite convergente $(b_{\varphi(n)})$ de limite $b\in K$. La suite $(a_{\varphi(n)})$ est alors convergente de limite a=u-b car $a_{\varphi(n)}=u_{\varphi(n)}-b_{\varphi(n)}$. Or $(a_{\varphi(n)})$ est une suite d'éléments du fermé F donc $a\in F$ et puisque $u=a+b,\ u\in F+K$. Finalement F+K est fermée.

Exercice 29: [énoncé]

Soit (u_n) une suite convergente d'éléments de F et posons u sa limite. On peut écrire $u_n = \lambda_n.x_n$ avec $x_n \in K$ et $\lambda_n \geqslant 0$. $0 \notin K$ donc

$$\forall \alpha > 0, B(0, \alpha) \subset C_E K$$

 $||u_n|| \to ||u||$ et $\alpha \leq ||x_n|| \leq M$ donc (λ_n) est bornée.

Par double extraction $(x_{\varphi(n)})$ et $(\lambda_{\varphi(n)})$ convergent vers $x \in \mathbb{R}$ et $\lambda \in \mathbb{R}^+$. On a alors $u = \lambda x$.

Exercice 30 : [énoncé]

Soient $(x_n) \in K^{\mathbb{N}}$ et $(y_n) \in L^{\mathbb{N}}$ telles que

$$d(K, L) = \inf_{(x,y) \in K \times L} d(x,y) = \lim_{n \to \infty} d(x_n, y_n)$$

On peut extraire de (x_n) une suite convergente $(x_{\varphi(n)})$ et on peut extraire de $(y_{\varphi(n)})$ une suite convergente $(y_{\varphi(\psi(n))})$.

Pour $x = \lim x_{\varphi(n)} \in K$ et $y = \lim y_{\varphi(\psi(n))} \in L$ on a

$$d(K, L) = d(x, y) > 0$$

 $\operatorname{car} K \cap L = \emptyset.$

Exercice 31 : [énoncé]

L'application $x \mapsto d(x, L) = \inf_{y \in L} \|y - x\|$ est une fonction réelle continue sur le compact K donc admet un minimum en un certain $a \in K$. Or $y \mapsto \|y - a\|$ est une fonction réelle continue sur le compact L donc admet un minimum en un certain $b \in L$. Ainsi

$$d(K, L) = \inf_{x \in K} \inf_{y \in L} \|y - x\| = \inf_{y \in L} \|y - a\| = \|b - a\| > 0$$

car $a \neq b$ puisque $K \cap L = \emptyset$.

Exercice 32 : [énoncé]

a) Posons d = d(x, F).

$$\forall n \in \mathbb{N}^*, \exists x_n \in F, \|x - x_n\| \leqslant d + \frac{1}{n}$$

Cela permet de définir une (x_n) bornée, elle admet donc une sous-suite convergente $(x_{\varphi(n)})$ dont on note \bar{x} la limite. On a $\bar{x} \in F$ car F est une partie fermée et puisque $||x - x_n|| \to d$ on obtient $||x - \bar{x}|| = d$.

b) Non, prendre x = 0 et F l'hypersphère unité.

Exercice 33: [énoncé]

a) Soit $((x_n, y_n))_{n \ge 0}$ une suite d'éléments de Γ_f . On suppose que la suite $((x_n, y_n))_{n \ge 0}$ converge vers (x_∞, y_∞) . Puisque $y_n = f(x_n)$, on obtient à la limite $y_\infty = f(x_\infty)$ car f est continue.

La partie Γ_f est alors fermée en vertu de la caractérisation séquentielle des parties fermées.

b) Soit $(x_n) \in \mathbb{R}^{\mathbb{N}}$ une suite de limite $a \in \mathbb{R}$ et $(y_n) = (f(x_n))$ son image. Soit b une valeur d'adhérence de (y_n) . Il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$y_{\varphi(n)} \to b$$

On a alors

$$(x_{\varphi(n)}, y_{\varphi(n)}) \to (a, b)$$

Or il s'agit d'une suite d'éléments du graphe Γ_f qui est supposé fermé. On en déduit $(a,b)\in\Gamma_f$ et donc b=f(a).

Ainsi, la suite (y_n) ne possède qu'une seule valeur d'adhérence. Or elle évolue dans un compact car bornée en dimension finie et donc, si elle ne possède qu'une valeur d'adhérence, elle converge vers celle-ci.

Par la caractérisation séquentielle, on peut conclure que f est continue en a.

c) Non, on obtient un contre-exemple avec la fonction donnée par

$$f(x) = \begin{cases} 1/x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Le graphe de cette fonction est fermée car réunion de deux fermés

$$\{(x,y)/xy=1\} \cup \{(0,0)\}$$

mais cette fonction n'est pas continue.

Exercice 34: [énoncé]

Soit $(x_n) \in X^{\mathbb{N}}$ une suite de limite $a \in X$ et $(y_n) = (f(x_n))$ son image. Soit b une valeur d'adhérence de (y_n) . Il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$y_{\varphi(n)} \to b$$

On a alors

$$(x_{\varphi(n)}, y_{\varphi(n)}) \to (a, b)$$

Or il s'agit d'une suite d'éléments du graphe Γ_f qui est supposé fermé. On en déduit $(a,b) \in \Gamma_f$ et donc b=f(a).

Ainsi, la suite (y_n) ne possède qu'une seule valeur d'adhérence. Or elle évolue dans un compact car bornée en dimension finie et donc, si elle ne possède qu'une valeur d'adhérence, elle converge vers celle-ci.

Par la caractérisation séquentielle, on peut conclure que f est continue en a.

Exercice 35 : [énoncé]

a) Soit $a \in E$. Puisque la partie A est bornée et non vide, l'ensemble $\{\|x-a\|/x \in A\}$ est une partie non vide et majorée de $\mathbb R$ ce qui permet d'introduire

$$R_a = \sup_{x \in A} \{ \|x - a\| / x \in A \}$$

Il est immédiat que $A \subset \bar{B}(a, R_a)$ et que R_a est le rayon minimal d'une boule fermée de centre a contenant la partie A.

L'ensemble $\{R_a/a \in E\}$ est une partie non vide et minorée de \mathbb{R} , on peut donc introduire

$$R = \inf \left\{ R_a / a \in E \right\}$$

Par la caractérisation séquentielle des bornes inférieures, il existe une suite (a_n) d'éléments de E telle que

$$R_{a_n} \to R$$

Soit $x_0 \in A$. Puisque $A \subset \bar{B}(a_n, R_{a_n})$, on a

$$||x_0 - a_n|| \leqslant R_{a_n}$$

et donc

$$||a_n|| \le ||x_0|| + ||x_0 - a_n|| \le ||x_0|| + R_n \to ||x_0|| + R$$

ce qui permet d'affirmer que la suite (a_n) est bornée. Puisque dim $E < +\infty$, on peut extraire de (a_n) une suite convergente $(a_{\varphi(n)})$ dont on notera a la limite. Soit $x \in A$. Puisque

$$||x - a_n|| \leqslant R_{a_n}$$

on obtient à la limite

$$||x - a|| \leq R$$

et donc $A \subset \bar{B}(a,R)$.

Enfin, par construction, $\bar{B}(a,R)$ est une boule de rayon minimal contenant la partie A (en s'autorisant de parler de boule fermée de rayon nul dans le cas où R=0).

b) On suppose ici l'espace E euclidien.

Supposons $\bar{B}(a,R)$ et $\bar{B}(a',R)$ solutions et montrons a=a'.

Posons

$$b = \frac{1}{2}(a + a')$$

En vertu de l'identité du parallélogramme

$$\|\alpha\|^2 + \|\beta\|^2 = \frac{1}{2} (\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2)$$

appliquée à

$$\alpha = x - b$$
 et $\beta = \frac{a - a'}{2}$

on obtient pour tout $x \in A$

$$||x - b||^2 + ||\beta||^2 = \frac{1}{2} (||x - a||^2 + ||x - a'||^2) \le R^2$$

et donc

$$||x - b|| \leqslant \sqrt{R^2 - ||\beta||^2}$$

Ainsi

$$R_b \leqslant \sqrt{R^2 - \|\beta\|^2}$$

Or par définition de R, on a aussi $R_b \geqslant R$ et donc on peut affirmer $\|\beta\| = 0$ i.e. a = a'.

Exercice 36: [énoncé]

a) Soit (u_n) une suite convergente d'élément de F' de limite u_{∞} . Pour chaque $n \in \mathbb{N}$, il existe $x_n \in F$ tel que

$$||u_n - x_n|| \leqslant 1$$

Puisque la suite (u_n) converge, elle est bornée et donc la suite (x_n) l'est aussi. Puisque l'espace E est de dimension finie, on peut extraire une suite convergente de la suite (x_n) . Notons-la $(x_{\varphi(n)})$. La limite x_∞ de cette suite extraite appartient à F car F est une partie fermée. Pour tout $n \in \mathbb{N}$, on a

$$\left\| u_{\varphi(n)} - x_{\varphi(n)} \right\| \leqslant 1$$

donc à la limite

$$||u_{\infty} - x_{\infty}|| \leqslant 1$$

et donc $u_{\infty} \in F'$.

Ainsi la partie F' est fermée.

b) Supposons $E = \mathbb{K}[X]$ muni de la norme

$$||P||_1 = \sum_{k=0}^{+\infty} |a_k| \text{ avec } P = \sum_{k=0}^{+\infty} a_k X^k$$

Posons

$$F = \left\{ \frac{n+1}{n} X^n / n \in \mathbb{N}^* \right\}$$

Pour tout $n \in \mathbb{N}$

$$P_n = \frac{1}{n}X^n = \frac{n+1}{n}X^n - X^n \in F'$$

 $_{
m et}$

$$P_n \xrightarrow{\|\cdot\|_1} 0 \notin F'$$

donc la partie F' n'est pas fermée.

Exercice 37: [énoncé]

Soit (y_n) une suite convergente d'éléments de f(F) de limite y_∞ . On veut établir que $y_\infty \in f(F)$. Si y_∞ est l'un des éléments de la suite (y_n) l'affaire est entendue. Sans perte de généralités, on peut supposer que pour tout $n \in \mathbb{N}$, $y_n \neq y_\infty$. Pour tout $n \in \mathbb{N}$, il existe $x_n \in F$ tel que $y_n = f(x_n)$. L'ensemble $K = \{y_n/n \in \mathbb{N}\} \cup \{y_\infty\}$ est un compact de E_2 donc $f^{-1}(K)$ est un compact de E_1 . La suite (x_n) apparaît comme étant une suite d'éléments du compacte $f^{-1}(K)$, on peut donc en extraire une suite convergeant dans la partie $x_{\varphi(n)} \to x_\infty \in f^{-1}(K)$. De plus $(x_{\varphi(n)})$ étant une suite d'éléments du fermé F, on peut affirmer $x_\infty \in F$. On va maintenant établir $y_\infty = f(x_\infty)$ ce qui permettra de conclure. Pour tout $N \in \mathbb{N}$, posons $K_N = \{y_n/n \geqslant N\} \cup \{y_\infty\}$. K_N est un compact, $f^{-1}(K_N)$ est donc fermé et par suite $x_\infty \in f^{-1}(K_N)$. Ainsi,

$$x_{\infty} \in \bigcap_{N \in \mathbb{N}} f^{-1}(K_N) = f^{-1}\left(\bigcap_{N \in \mathbb{N}} K_N\right)$$
. Or $\bigcap_{N \in \mathbb{N}} K_N = \{y_{\infty}\}$ donc $f(x_{\infty}) = y_{\infty}$.

Exercice 38: [énoncé]

Pour tout $n \in \mathbb{N}$, introduisons $x_n \in F_n$. Ceci définit une suite $(x_n)_{n \in \mathbb{N}}$. Cette suite est une suite d'éléments de la partie F_0 qui est bornée, on peut donc en extraire une suite convergente $(x_{\varphi(n)})_{n \in \mathbb{N}}$. Posons ℓ sa limite. Pour tout $n \in \mathbb{N}$, à partir d'un certain rang k_0 , on a $\varphi(k) \geqslant n$ et donc

$$x_{\varphi(k)} \in F_{\varphi(k)} \subset F_n$$

La suite $(x_{\varphi(k)})_{k\geqslant k_0}$ est une suite convergente d'éléments de F_n . On a alors $\ell\in F_n$ car F_n est une partie fermée.

On en déduit

$$\ell \in \bigcap_{n \in \mathbb{N}} F_n$$

Soit $x \in \bigcap_{n \in \mathbb{N}} F_n$. Pour tout $n \in \mathbb{N}$, $x, \ell \in F_n$ donc

$$||x - \ell|| \le \delta(F_n)$$

Or $\delta(F_n) \to 0$ donc $x = \ell$. Finalement

$$\bigcap_{n\in\mathbb{N}} F_n = \{\ell\}$$

Exercice 39 : [énoncé]

- a) Si E est de dimension finie alors F est fermé car tout sous-espace vectoriel de dimension finie est fermé. On en déduit $F = \bar{F}$.
- b) Il suffit de considérer un sous-espace vectoriel dense comme par exemple l'espace des fonctions polynômes de [a,b] vers $\mathbb K$ dense dans celui des fonctions continues de [a,b] vers $\mathbb K$ normé par $\|\cdot\|_{\infty}$.

Exercice 40: [énoncé]

a)

$$\left\| x - \frac{a+b}{2} \right\|^2 = \frac{1}{4} \left\| x - a \right\|^2 + \frac{1}{4} \left\| x - b \right\|^2 + \frac{1}{2} (x - a \mid x - b) \leqslant \left\| x - a \right\|^2$$

De plus s'il y a égalité, x-a et x-b sont colinéaires et ont même sens, or ces vecteurs ont même norme, ils sont dès lors égaux ce qui est exclu puisque $a \neq b$. b) Cas F borné (donc compact).

Il existe $(y_n) \in F^{\mathbb{N}}$ tel que

$$||x-y_n|| \xrightarrow[n \to +\infty]{} \inf_{y \in F} ||x-y||$$

Pour a valeur d'adhérence de (y_n) , on a par passage à la limite

$$||x - a|| = \inf_{y \in F} ||x - y||$$

Cas général. Posons $d=\inf_{y\in F}\|x-y\|$ et $F'=F\cap \overline{B}(x,d+1).$

F' est fermé et borné donc il existe $a \in F'$ tel que $||x - a|| = \inf_{y \in F'} ||x - y||$.

Or par double inégalité $\inf_{y \in F'} \|x - y\| = \inf_{y \in F} \|x - y\|$ et $a \in F$ donc il existe $a \in F$ tel que voulu.

c) L'existence est assuré par b
. Pour l'unicité, supposons par l'absurde l'existence de $a \neq b$ solutions.

Par a), on a

$$\left\| x - \frac{a+b}{2} \right\| < \|x - a\|$$

avec $\frac{a+b}{2} \in A$ car A convexe. Cela contredit la définition de a.

$$||x - y||^2 = ||x - a||^2 + 2(x - a | a - y) + ||a - y||^2 \ge ||x - a||^2$$

avec $a \in A$ donc a = P(x).

e)

$$||x - (ty + (1 - t)P(x))||^{2} = ||x - P(x) - t(y - P(x))||^{2}$$
$$= ||x - P(x)|| - 2t(x - P(x) | y - P(x)) + t^{2} ||y - P(x)||^{2}$$

or

$$-2t(x - P(x) \mid y - P(x)) + t^{2} \|y - P(x)\|^{2} \underset{t \to 0}{\sim} -2t(x - P(x) \mid y - P(x))$$

est strictement négatif au voisinage de zéro.

Pour t suffisamment petit, ty + (1-t)P(x) est un vecteur du convexe A contredisant la définition de a.

f) Par d), on a \Leftarrow . Par e., on a \Rightarrow via contraposée.

g)

$$(x - y \mid P(x) - P(y)) = (x - P(x) \mid P(x) - P(y))$$

+ $||P(x) - P(y)||^2 + (P(y) - y \mid P(x) - P(y))$

avec

$$(x - P(x) \mid P(x) - P(y)) = -(x - P(x) \mid P(y) - P(x)) \ge 0$$

 $_{
m et}$

$$(P(y) - y \mid P(x) - P(y)) = -(y - P(y) \mid P(x) - P(y)) \ge 0$$

donc

$$(x - y \mid P(x) - P(y)) \ge ||P(x) - P(y)||^2$$

Par Cauchy-Schwarz

$$||P(x) - P(y)||^2 \le ||x - y|| ||P(x) - P(y)||$$

Pour $P(x) \neq P(y)$, $||P(x) - P(y)|| \leq ||x - y||$ et pour P(x) = P(y) aussi. P est donc continue car lipschitzienne.

Exercice 41 : [énoncé]

a) Posons $M \in \mathbb{R}^+$ vérifiant

$$\forall p \in \mathbb{N}, ||A^p|| \leqslant M$$

On vérifie alors

$$\forall p \in \mathbb{N}, ||B_p|| \leqslant M$$

La suite $(B_p)_{p\geqslant 1}$ est bornée en dimension finie, elle admet donc une valeur d'adhérence.

b) Par télescopage

$$B_p(I_n - A) = \frac{1}{p} \left(I_n - A^p \right)$$

et donc

$$||B_p(I_n - A)|| \leqslant \frac{1+M}{p} \xrightarrow[p \to +\infty]{} 0$$

Ainsi $B_p(I_n - A) \xrightarrow[p \to +\infty]{} O_n$. En raisonnant par la suite extraite $(B_{\varphi(p)})$ convergeant vers B, on obtient par unicité de la limite

$$B(I_n - A) = O_n$$

On en déduit B = BA puis $B = BA^k$ et $BB_p = B$. En raisonnant par la suite extraite $(B_{\varphi(p)})$ convergeant vers B, on obtient $B^2 = B$.

c) B est une projection puisque $B^2 = B$.

Pour $X \in \ker(A - I_n)$, on a AX = X et donc $B_pX = X$ puis, par limite de $(B_{\varphi(p)})$, on obtient BX = X.

Ainsi $\ker(A - I_n) \subset \operatorname{Im} B$.

Pour $Y \in \text{Im}(A - I_n)$, on peut écrire Y = AX - X et alors BY = BAX - BX = 0. Ainsi $\text{Im}(A - I_n) \subset \ker B$.

Par la formule du rang

 $\dim \ker(A - I_n) + \dim \operatorname{Im}(A - I_n) = n = \dim \operatorname{Im}B + \dim \ker B$ et donc $\ker(A - I_n) = \operatorname{Im}B$ et $\operatorname{Im}(A - I_n) = \ker B$. On peut alors conclure que B est la projection affirmée.

d) La valeur d'adhérence B est finalement déterminée de manière unique. Puisque la suite $(B_p)_{p\geqslant 1}$ est bornée et n'admet qu'une valeur d'adhérence, elle converge vers celle-ci.